Spatially adaptive stochastic numerical methods for intrinsic fluctuations in reaction-diffusion systems

نویسنده

  • Paul J. Atzberger
چکیده

Stochastic partial differential equations are introduced for the continuum concentration fields of reaction-diffusion systems. The stochastic partial differential equations account for fluctuations arising from the finite number of molecules which diffusively migrate and react. Spatially adaptive stochastic numerical methods are developed for approximation of the stochastic partial differential equations. The methods allow for adaptive meshes with multiple levels of resolution, Neumann and Dirichlet boundary conditions, and domains having geometries with curved boundaries. A key issue addressed by the methods is the formulation of consistent discretizations for the stochastic driving fields at coarse-refined interfaces of the mesh and at boundaries. Methods are also introduced for the efficient generation of the required stochastic driving fields on such meshes. As a demonstration of the methods, investigations are made of the role of fluctuations in a biological model for microorganism direction sensing based on concentration gradients. Also investigated, a mechanism for spatial pattern formation induced by fluctuations. The discretization approaches introduced for SPDEs have the potential to be widely applicable in the development of numerical methods for the study of spatially extended stochastic systems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic simulation of reaction-diffusion systems: A fluctuating-hydrodynamics approach.

We develop numerical methods for stochastic reaction-diffusion systems based on approaches used for fluctuatinghydrodynamics (FHD). For hydrodynamicsystems, the FHD formulation is formally described by stochastic partial differential equations (SPDEs). In the reaction-diffusion systems we consider, our model becomes similar to the reaction-diffusion master equation (RDME) description when our S...

متن کامل

Fluctuating Hydrodynamics of Reaction-Diffusion Systems

We develop numerical methods for reaction-diffusion systems based on the equations of fluctuating hydrodynamics (FHD). While the FHD formulation is formally described by stochastic partial differential equations (SPDEs), it becomes similar to the reaction-diffusion master equation (RDME) description when those SPDEs are spatially discretized and reactions are modeled as a source term having Poi...

متن کامل

Spatially Adaptive Stochastic Multigrid Methods for Fluid-structure Systems with Thermal Fluctuations

In microscopic mechanical systems interactions between elastic structures are often mediated by the hydrodynamics of a solvent fluid. At microscopic scales the elastic structures are also subject to thermal fluctuations. Stochastic numerical methods are developed based on multigrid which allow for the efficient computation of both the hydrodynamic interactions in the presence of walls and the t...

متن کامل

Almost sure exponential stability of stochastic reaction diffusion systems with Markovian jump

The stochastic reaction diffusion systems may suffer sudden shocks‎, ‎in order to explain this phenomena‎, ‎we use Markovian jumps to model stochastic reaction diffusion systems‎. ‎In this paper‎, ‎we are interested in almost sure exponential stability of stochastic reaction diffusion systems with Markovian jumps‎. ‎Under some reasonable conditions‎, ‎we show that the trivial solution of stocha...

متن کامل

Reaction-noise induced homochirality

Starting from the chemical master equation, we employ field theoretic techniques to derive Langevin-type equations that exactly describe the stochastic dynamics of the Frank chiral amplification model with spatial diffusion. The intrinsic multiplicative noise properties are completely and rigorously derived by this procedure. We carry out numerical simulations in two spatial dimensions. When th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comput. Physics

دوره 229  شماره 

صفحات  -

تاریخ انتشار 2010